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The stability of a compressible non-dissipative swirling flow to adiabatic in- 
finitesimal disturbances of arbitrary orientation is considered. The resulting 
sufficient condition for stability is the general form of the effective Richardson 
criterion for swirling flows, first obtained, for axisymmetric modes only, by 
Howard. In  addition, upper bounds to the growth rate of unstable modes are 
obtained and some extensions of the semicircle theorem to azimuthal distur- 
bances are stated. 

1. Introduction 
Many of the results on the stability of variable density, inviscid shear flows 

in the presence of gravity (Miles 1961; Howard 1961; Chimonas 1970) have been 
shown to possess parallels in stability analyses of axisymmetric disturbances in 
an inviscid swirling flow. In  particular, Howard & Gupta (1962) examined the 
stability of a swirling, incompressible, constant density, inviscid flow for which 
the pressure, axial velocity and azimuthal velocity are functions of the radius 
r only and showed that an equivalent ‘Richardson’ criterion can be stated for 
the stability of such flows against axisymmetric disturbances. They also noted 
that, if the density is constant and non-axisymmetric disturbances are present, 
no purely stabilizing term exists and consequently no stability condition can be 
obtained by their method. Leibovich (1  969) extended the results of Howard & 
Gupta (l962),  for axisymmetric disturbances only, to incompressible flows of 
variable density. Kurzweg (1 969) also considered the same flow, but studied its 
stability against all disturbances. The resulting sufficient condition for stability 
was expressed in terms of two simultaneous inequalities that were fairly com- 
plicatedfunctions of the basic flow quantities. No ‘Richardson ’ number could be 
defined through the use of these inequalities. Recently, Howard (1 973) returned 
to the problem and investigated the effect of compressibility. He considered 
axisymmetric disturbances only and showed that the results of Chimonas (1970) 
for the stability of compressible stably stratified shear flow possess an analogue in 
compressible swirling flow and that this can be expressed in terms of an 
effective ‘ Brunt-Vaisalii ’ frequency. Because non-axisymmetric disturbances 
are known to be the most unstable ones (see Pedley 1968; Lessen, Sadler & Lin 
1968, for example), it  is important to investigate whether Howard’s (1973) 
results can be extended to include general disturbances of arbitrary asymmetry. 
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The results of the present work can be summarized in the following theorem. 
The stability of compressible non-dissipative swirling $ow to all small disturbances 
is assured i f  

N 2  - $[ W'2 + ( V' - V/r)2]  B 0, 

where N 2  = r ( P + 3 l [ ~ - r ( ~ + ( ~ ) ' / C ~ ] ,  

p , ,  C,, V and W are the density, sound speed, azimuthal velocity and axial velocity 
respectively, all being functions of the radius r only, and (T is the constant angular 
velocity of the frame of reference (if any). A prime indicates differentiation with 
respect to r .  

In  addition to the stability criterion, an upper bound to the growth rate of 
small disturbances of arbitrary configuration is obtained. Finally, the semi- 
circle theorem (Howard 1961) is extended to azimuthal disturbances to in- 
compressible, constant density, swirling flows, but further attempts to derive 
general necessary conditions for instability were unsuccessful. 

2. Equations of motion 

to a rotating frame of angular velocity Q in the presence of gravity are 
The equations governing the isentropic motion of ;b compressible fluid relative 

DplDt +pV. q = 0, (2.1) 

p - + 2 a x q + a x ( a x r )  = -Vp+pg, (2.2) 

(2.31, (2.4) 

[2 I 
DslDt = 0, s = s(p,p). 

Here p is the density, p the pressure, s the specific entropy, q the velocity, g 
the gravitational acceleration and r the radius vector. The operator D/Dt is 
defined as usual by 

Equation (2.4) is the equation of state for the fluid, and in conjunction with 
(2.3) gives 

o p t  = alat + 9. v. (2.5) 

DplDt - C2Dp/Dt = 0, (2.6) 

where c2 = [apppl,. (2.7) 

The system of equations is now comprised of (3.1), (2.2) and (2.6) along with the 
definition (2.7'). 

Let us' introduce a cylindrical co-ordinate system ( r ,  8, z )  rotating with a 
constant angular velocity u parallel to the x axis and neglect gravity. Then 
(2.1)) (2.2) and (2.6) are satisfied in the cylindrical region rl 6 r < r2 by any flow 

(3.8) 
with 

qfr) = V ( r )  e, + W ( r )  e,, 

and p,(r), V( r )  and W ( r )  arbitrary given functions of r .  
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We are interested in examining the stability of the basic state (2.8), (2.9) to 
infinitesimal perturbations of the form 

exp [i(wt -mB - kz ) ] ,  (2.10) 

where w = w,+iwi (wi < 0) is the complex frequency (whose imaginary part is 
assumed non-zero) with m and k the azimuthal and axial wavenumbers, both 
taken to be real. 

Linearization of the ba,sic equations (2.1), (2.2) and (2.6) about a basic flow 
given by (2.8) and (2.9) yields the following set of linearized equations for the 
perturbation quantities $jl, pl, v,, 0 0  and va: 

ip, Qv, + po( P‘ + V/r + 2cr) vr = (im/r) $jl, (2.13) 

ip, Qv, +PO W‘V, = ik@l,  (2.14) 

in@, + v,p; = Ci(iQf7, + v,pA). (2.15) 

In  the above, Ct(r)  = [ap,/ap,], is the square of the sound speed and Q is given by 

Q = w-mV/r-kW. (2.16) 

Primes denote differentiation with respect to r. 
Eliminating 17,) pl, and v, in favour of V ,  from (2.11)-(2.15), we obtain 

& P o ,  as -+-+v, dv, v, - P’+-+2fT ) +- “/+A)]) { [ d r  r (:( r L2 Pot; 
d 

(2.18)) (2.19) where 

(2.20) 

CD = 2 ( P / r + g ) ( V ’ + V / r + 2 v ) .  (2.21) 

N is the effective Brunt-Vaisala frequency and here is assumed positive t o  
assure static stability; CD is the Rayleigh discriminant. 
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Let us define 

anti 

E(r)  = exp [ -1‘ (a) dr] , 
P O  cg 

(2.22) 

(2.23) 

(2.24) 

With these definitions (2.17) becomes 

RSQ 
(a [ Q ( 4‘ +;) +: ($ + cr) $71 1 - ( p + cr) y [ Q ( q’ +;) +? (5 + .) 

-R[QZ-N2-CD]q = 0. (2.25) 

If the fluid is contained in an annular cylinder with rigid walls at  rl ,  which 
may be zero, and r2 > rl ,  the boundary conditions to be imposed on v, and hence 
on q are that they must vanish at  rl and r2. For the special case when Iml = 1 
and rl = 0,  the boundary condition v, = 0 at r = rl = 0 has to be replaced by 
the condition vi = 0. 

3. The sufficient condition for stability 
Following Howard (1973), let us assume that the flow is unstable, so that mi, 

the imaginary part of the frequency, is negative definite, and define a new 
variable 

(p = q ! X  (3.1) 

Substituting (3.1) into (2.25) we obtain 

RQS 1+- 4;(: - + c r  )I: 
2 A  

-RQ [ 1---- :: !J 9 = 0. (3.2) 

Multiplication of (3.2) by r$*, where $* is the complex conjugate of $, integration 
of the resulting equation between rl and r2, and use of the boundary conditions 
results in 
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The imaginary part of (3.3) is 

where f i r  is the real part of 52. 

two terms in the following manner: 
The integrand I, of the first integral in (3.4) can be rewritten as the sum of 

The first term 1, is a perfect square. The second term I2 is also non-negative since 

and 

It follows that I,, is non-negative and the first integral in (3.4) is non-negative. 
Equation (3.4) can be written as 

The second integral in (3.5) is positive. If 

throughout the range rl < r < r2,  the third integral in (3.5) will also be non- 
negative and (3.5) will not be satisfied unless wi = 0. Thus a sufficient condition 
for stability is that (3.6) holds throughout the domain of the flow. 
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Following Howard (1961, $4) we obtain from (3.5) the following bound for 
the growth rate wi:  

w: 6 max (4( 1 [T Q’ -r 3 m  (r v + v)I2/($ + P)] -JP -- Q) , (3.7) 

where the maximum is over the domain [rl, r2] .  

numbers, we note that 
In  an effort to obtain a criterion that does not depend explicitly on the wave- 

and so if 
N2 + a) - $[W’2+ (V’ + 3V/r  + 4421 2 0 (3.9) 

then (3.6) is also satisfied. Rearranging (3.9) we obtain 

N2-$[W12+(V-  V/r)2] 2 0 (3.10) 

for stability. This proves the theorem stated in the introduction. The effective 
‘Richardson number’ that results is N2/[W’2 + (V’- V/r)2]. With the help of 
(3.8), the expression for the growth rate (3.7) becomes 

w: < max {$[ W 2  + ( V’ - V/Y)~]  - N2}, (3.11) 

which does not involve the wavenumbers explicitly but is not as stringent as 
(3.7). 

4. The semicircle theorem for azimuthal disturbances 
While this paper was in preparation, Maslowe (1974) presented some new 

results on the stability of incompressible rigidly rotating flows. He proved that 
for such flows a necessary condition for instability is that 

Qr = w,-mV/r-kW 

be zero somewhere in rl < r < r2. Furthermore, he calculated numerically the 
growth rates for non-axisymmetric disturbances with azimuthal wavenumbers 
of - 1 and - 4. An attempt to extend Maslowe’s necessary condition for in- 
stability to heterogeneous flows with non-axisymmetric disturbances was un- 
successful, We were able, though, to demonstrate that the ‘semicircle’ theorem 
(Howard 1961) holds for azimuthal disturbances in incompressible flows with 
arbitrary axial and swirl velocity components. To show this, we return to (2.25), 
multiply it by rq* and integrate from rl to r2. The result is 

+-44m2 RS ( p + c ) 2 ~ + R [ Q 2 - N a  - O]rlqI2] = 0. (4.1) 
A r 

When m = 0,  the above equation yields (Howard 1973) the semicircle theorem 
for axisymmetric disturbances. 
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If we now restrict our attention to  incompressible flows and azimuthal dis- 
turbances, so that c~~ = 0 and k = 0, we obtain from the real and imaginary 
parts, respectively, of (4.1) 

j,ypodr (( Q; - of) r 1 (rq)’ I 

2o , / ,~p0dr (  Qrrl(rq)’/2+rn (r2jpj2)‘+m2Qrrlq12) = 0. (4.3) 

2 
+ 4m2 (: + v) rlql + m2[( QF - wf)  - N 2  - a] r Iql2) = 0 (4.2) 

and 

I n  (4.2) and (4.3) Q, is reduced to 

Q, = or-mV/r. 

Equation (4.3) can be rewritten as 

When po = constant, the right-hand side of (4.4) is zero, because of the boundary 
conditions. Furthermore, the square bracket on the left-hand side, 

Pl = rl(rq)’12- (r21q12)’+m2rlq121 

can be expanded so that it takes the form 

PI = r31 q’ 12 + r2(pq*)‘ + r 141 2 - ?(qq*) ’ - 2r I q]  2 + m2r l q l 2  

= r31q’12+(m2- l)rlq12 2 0, 

since Iml 2 1. Then (4.4) can be satisfied only if either wi = 0 or Q, = or-mV/r 
is zero somewhere in rl 6 r < v2, and so a necessary condition for instability of 
azimuthal disturbances is that  u,\m be equal to  V/r somewhere in rl < r < r2. 

Upon rearrangement, (4.2) and (4.4) become 

and 

From (4.5) and (4.6), following Howard (1961, $3) the semicircle theorem is 
obtained, i.e. w, and wi are restricted such that 

(4.7) [w,/m - Q(a + b)I2 + (wi/m)2 6 [+(a - b)I2 

holds. I n  (4.7), a and b are constants such that a < V/r 6 b. 
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